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In this paper an exact solution is obtained, in terms of Veierstrassian 
elliptic functions, of the energy equation for an incompressible viscous 
fluid with a Prandtl number equal to unity, for the case of the well 
known 111 plane steady flow between two nonparallel plane walls. Trans- 
formation of the solution from Weierstrasslan functions to the tabulated 
Jacobian functions 12 1 makes it possible to present the solution thus 
obtained in graphical form. 

We note that after this work had been practically completed, the author 
became aware that this exact solution had already been considered by 
Yillsaps and Pohlhausen [ 3 I. However, in the latter paper the energy 
equation was integrated numerically. 

1. Fonulrtion of the problem. It is well known [ 1 1 that the Navier- 
Stokes equations, written in a polar system of coordinates r, 6, admits 
of an exact solution in the form 

v” = 2 = - [3’8 (6 - 80, 82, 88) + I], VB = 0 

g2, g8) + k-k + fin 1 + con& 

(1.1) 

where vr is the radial, and v6 the tangential component of the vector 
velocity, p is the pressure, p e density, v the kinematic coefficient 
of viscosity, y the Weierstrassian elliptic function. g2 and g., are the 
invariants of the function y, 8, is an arbitrary constant which may be a 
complex number. This solution can be interpreted as the plane flow be- 
tween two nonparallel walls with an included angle of 2~. Then the arbit- 
rary constants 8,. g2 and g3 are determined from the condition of no slip 
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at the walls and from the condition of the specified discharge Q: 

a 

P kt a - %, a, k3) = - $ , s rv,, (0) de = Q 

-a 

(1.2) 

It is not difficult now to verify that the equation of energy, written 
in the polar system of coordinates. admits of an exact solution in the 
form 

144Aav2 
T = --qi-- t 0 (1.3) 

where A is the reciprocal of the mechanical equivalent of heat, (I is the 
Prandtl number. whilst the function t(8) has to satisfy the inhomogeneous 
Lame equation 

where 

t” (u) = [12a0 (u) + 4a - 41 t w - IV3 (u) + P2 w + NJ (u) + ml (1.4) 

u = 8 - eo, 1+-$gp’m=$_+g3 

We shall henceforth consider the case of constant temperature of the 
walls: then the function t(u) = t(6 - 8,) must satisfy the homogeneous 
boundary conditions 

t (a - e,) = t (--a - e,) = 0 (1.5) 

Since the solution of equation (1.4) depends on the function ~(8 - 8,. 

g2 ’ gg), defined by the constants 6,,, g2 and g?, then in the study of 
the properties of the solution of equation (1.4) with the boundary con- 
ditions (1.5) we shall rely on the properties of the solution (1.1) ob- 
tained in the paper [ 4 I. 

2. The solution for the temperature profile. In the case u = 1 the 
homogeneous Lame equation takes the form: 

1” (u) = 12P (U) I! (u) (2.1) 

and it follows from the theory of elliptic functions that two of its 
particular solutions are 

h(u) = 0’ (u) (2.2) 

0’ (u) ta (u) = P’(u) \ (&) 3 - - 4 la2t (u + 01) + b2C (u +wJ+c’C (u + ~3) + 

+ (a% + b% + c*e.d ~1 (2.3~ 

where c(u) denotes the Weierstrassian function, 20~ and 2 o 3 are the 
two elementary periods of the function y(u): 
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--w* = 01 + wg, ei = P (wi) (i = 1,2,3) 

1 1 
a = (el - el) (el -ea) ’ IJ= (e2-el)(ez-ea) ’ ’ = (es - el)iel - e,) (2.4) 

Applying the method of variation of arbitrary constants and utilizing 
the well known properties of the Weierstrassian functions y(u) and c(u) 
for the calculation of the indefinite integrals, we obtain as a parti- 
cular solution of the inhomogeneous equation (1.4) the following 
expression: 

t, (IL) = %J’ (IL) [$ C(u) + Bu + CC (u + ~1) + DC (u + %I+ CC (u + %)I (2.5) 

where 

C=~(~:!($e~‘+$e~~+~le~~+,,lel), D = $ b2 ($ e i + ’ e 9 + .$&?22+trIez 
3 

G= $ c? (+ e a3 + + es3 + $lesc + mea), B = Gel + De2 + Gea - $ (2.6) _ 

The general solution of equation (1.4) is then 

t (f9 = Clh (4 + c2 (tn) (u) + t, (u) (2.7) 

where cl, c2 are arbitrary constants, which must be found from the con- 
ditions (1.5) for the particular solution required with constant tempe- 
rature of the walls. 

We shall henceforth distinguish three separate cases, when the dis- 
criminant h = s,’ - 27g3’ of the cubic equation 4r3 - g2s - g7 = 0 is 
less than. greater than, or equal to zero. 

1. The case A < 0. Here we have 14 1 8, = y and the solution for the 
velocity profile 

is the unique solution and gives a purely divergent stream which is sym- 

metric relative to the axis of the diffuser. Here the solution (2.8) de- 
pends on two independent parameters H and the Jacobian modular function 
k2. The physical parameters of the problem - the Reynolds number NRe = 
Q/~v and the angle of divergence of the diffuser 2a - are expressed in 
terms of the parameters H and k2 by means of the conditions (1.2). and 
this relation is given by formulas (7. l), (7.3), or the tables presented 
in paper 14 1. If now in the solution (2.7) for the temperature profile 
we make the substitution u = 8 - o2 and transform from the Ueierstrassian 
functions y and 5 to the Jacobian functions sn, cn, dn and Zn, then the 
solution for the temperature, satisfying the boundary conditions (1.5). 
is obtained in the following form: 
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Here 

l(9) = S (0) <$ T (e) + DO + 2 [UP (0) - iVQ (O)] + DH (e) - 

- cl 12 (PP (6) - d (e)) + _ff (e) + Ye) (2.9) 

P (e) = J (e) - VH k2 F , Q(e)=v%kk’ rT 

R (e) = J (e) + I/a dn ’ (in: ‘* ‘) , 

an Tdnr 
s (9) = 41-0 (1 + cn q2 * 

Y = - (2k’ - 1) H [ I+ 
8k2 (1 - k,) + 1 

24p (I_ k”) 1 
el = VMT (4 + Ba + 2 W’ (a) - NQ (a)1 + DR (a) 

2bPW--qQ(a)l+fiW+ YU 

M = $ (PS - et) H+, N :.z $ (pt + qs) IZ-4 

D = _ + (2k2 _ 1) [+ (2k” - 1)s + 4 (2k2 -- 1) (1 - k2) k2 + $ (*’ r 1)2 H-’ - 

- + (2k” - 1) H-2 + +. H-S ] 

B=H 
[ 
(2,&2D)f(2k2-I)-4Nkk’-; H-’ 

1 
, k’2=1-k% 

W(l--k2)-1 2k2-1 
P= 16k*(l-kk2) ’ q=4kk 

s = H4 ci$_ (2kLi)‘f $. (2kz - 1)s (1 - k*) k2- 4 (1 - k2)2 k‘ + 

+ $. (2k2 _ 1) 
[ 
+ (2ka - 1)’ - 12 (1 - F) k2 

I [ 
H -1 + + + (2k2 - 1)” - 

_ 4ks (1 - k2)] H-2 + $2k” - 1) H-*} 

t=H~{$.(2k~-~)(l-~~)k~k’+fkk’[f(2k~-l)2-4(1 -k2)k2]H-l+ 

+ $ (2k” - 1) kk’I-I-2 + $ kk’H”} 
. 

K and B are the complete elliptic integrals of the first and second hinds 

with modulus k. 

From the solution (2.9) it is easy to obtain the value of the tempe- 
rature on the axis of the diffuser. We have 

t (0) = 2H2 (D - 8~) (2.10) 

Since all the functions S. T, P. Q and R occurring in the solution 
(2.9) are odd, then t(8) is an even function, and consequently the dis- 
tribution of temperature in this case (A< 0) is symmetric with respect 
to the axis. 
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2 are represented the profiles of velocity and tempe- 
from formulas (2.8) and (2.91 for the case k2 = 0.9. 

In Fig. 1 and 
ratura, computed 
H = 144, which corresponds 

2. The case h > 0. Here 

First variant: 8, = 9. 

Fig. 1. Fig. 2. 

to a = 0.07074 J 

several variants 

The solution for 

4O, N,_,. = 20.34. 

are possible. 

the velocity profile is [4 1 

2.0 = i& = - [3P (tl - 03) + 1) = 

= --[3hk%n~(BVi,) - ( 1 + k?) A+ l] 

(2.11) 
and consequently the stream is symmetric with respect to the axis of the 
diffuser. the quantity a taking the values vi, n2, . . . . which are the 
positive roots of the transcendental equation [4 1 

sn2 (7) VT) = 
(1 + IG) a - 1 

3hk’ 
In this case the solution (2.111 depends on the two independent para- 

meters x and the modulus of the Jacobian function k2. The physical para- 
meters - the number NRa and the angle 2a - are expressed in terms of x 
and k2 by means of the conditions (1.21, and this relation is given by 
the formulas (8.1). (8.2) or the Tables 2 and 3, presented in the paper 
[ 4 I. Substituting 8 - o&, in the solution (2.71 in place of the argument 
u. and transforming to Jacobian functions, we obtain the following ex- 
pression for the temperature profile, satisfying the boundary conditions 
(1.5). with a L- ‘I~: 

Here 

t (0) = SC (0) {$ TP (0) + B, 0 + CP2 (0) + DIfc (0) + CQZ (0) - 

- ce [n?:: (0) + b21in (0) + c’Q2 (0) + -;#,\ (2.12) 

P2 (0) = T.’ (0) - I’-$ 
sn (0 Vh) cu (0 Y i) __- - sn (0 l’/A1 dn (0 6) 

dr1 (0 Y i.) ’ 
R2 (0) = T,: (0) .- VA 

Cl1 (e 1: X) 

QZ (0) = T:: (0) + v-i - s,, (e ,Fh) , T?(O)= A 
C 
; _ $ (2 - k’) 1 o + 1 -a Zn (e ,‘x, 
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SI (0) = 2x’lW sn (0 v/h) cn (0 v’i;, dn (0 vi) 

‘/mTn (4 + Ba + cb (a) + l)RRa (a) + EQ, (a) 
es = 

nZPa (a) + b”l{n (a) + czQ2 (a j + yza 
(2.13) 

C (2 - k2) + D (2k2 - 1) -G (1 + k2)-; 

E = (2 - k2)2 + (2k2 - l)2 + (1 + k2)2, 6 = + (2 - k2) (2k2 - 1) (1 + k2) 

i 1 1 
a2 = (l_ ,$)2hi P *’ = (1 ._ k2)2 /&4 9 c2 = jyig 

2-k2 2kz-1 1 + k2 
(1 - k2)” 

-- 
k4 1 

The temperature on the axis of the stream is 

t (0) = 2)r2k2 (G - c2c2) (2.14) 

By virtue of the fact that all the functions occurring in (2.12) are 
odd, the temperature distribution in this case (A > 0, 8, = ~+is sym- 
metric with respect to the axis of the diffuser. 

Fig. 3. Fig. 4. 
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In Fig. 3 and 4 are shown the velocity and temperature profiles, com- 
puted from formulas (2.11) and (2.12) for the case k2 = 0.8, x = 196, 
which corresponds to a = 0.08727 PI 5’, NW,, = 34.82. In this case the flow 
obtained is purely divergent. 

With a = ‘13 = 2wi - qi the central diverging stream is flanked 
symmetrically on both sides by regions of inflow (Pig. 5). The temperature 
in this case is computed again from formula (2.12). but with another value 
of the constant c2, which is easily obtained from the following property 
of the functions T2, Pz, R2 and Q,. e.g.: 

Tt (0 f 2qn) = Tn (0) & 2nq)i [E/K - + (2 - ““‘1 . (2.15) 

where n is an integer. Then 

T2 WI) 

Tz(a)=Tz(qp)=2oJ E,'K- 
1 

$ (2-W 1 - Tz(?d 
has already been computed for the case when a = Wi. 

0’ 

Fig. 5. Fig. 6. 

In Fig. 5 and 6 are represented the velocity and temperature profiles, 
computed in this case (a = w., = 20. - n.) for k2 = 0.8. x = 196, (a = 
0.2346 J 13’30’. NW* = 10.82:. 

I -I 

When a = '1~ = 20~ + qI the central diverging 
symmetrically on both sides by regions of inflow 
rature profile is also correspondingly complex. 

stream is flanked 
and outflow. The tempe- 

Second variant: 8, = ~3. The solution for the 
iS 

velocity and temperature 

v"=-_(3'6(0 -at)+ I] = - 
cn*(O Vi) 

3"~dn*(oVh) -(I + k2)h + 1 1 (2.16) 

t(e)= Ss (0) {$'3('% + Be + Cb W + C&W + CQa(W - 

- es (a*~‘~ (0) + b2Ha (6) + C’QJ (0) + y20]], t (0) = - 2’h2kz (1 - k*) (D - c@) (2.17) 
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where 

P2 (0) = 7’2 W, Ra (‘3) = Qa (e), Q2 (0) = R2 (e), ~2 (e) = pa (e) 

&.$a (e) = - 2h%P (1 -- k2) 
sn (9 V/i;, cn (e V5;) 

dnJ (0 1/i) 

The expression for the constant c3 is obtained from formula (2.13), 
if instead of the functions with index 2 we substitute the functions with 
index 3. The expression for the coefficients a*, b*, c* and C, D, G, B 

remain the same as in the first variant. 

Here a can assume the following system of values [ 4 1 : a = oI - ql, 
a = oI + ql. a = oI + u2, a = oI + q3 and so on, a = n o1 (n is a positive 
integer). If a = o1 - vi, then the stream is purely converging and the 
temperature inside the stream is higher than the temperature of the walls 
(Fig. ‘7 and 8), k* = 0.9, x = 400, a = 4’. Ng. = 31.9. If a = oi + vi, 
then the central converging stream is flanked symmetrically by regions of 
outflow and the temperature in the region of the converging stream is 
higher than the temperature of the walls, whilst in. the region of the 
diverging stream it is lower than the temperature of the walls (Fig. 9 
and lo), k* = 0.8, h = 400, a = loo, Ng, = 33. When a = oi + q2. the 
central converging stream is flanked symmetrically on both sides by 
regions of outflow and inflow. When a = n ai, the solution for the velo- 
city profile has the form 14 1 : 

nr = - F [3P (9 - a, - wx) + 11 

where a0 = 2 (q - vi) for al = ol, and a0 = f ql for a2 = 2oi, and so 
on. In this case the stream is not symmetric relative to the axis, Since 

‘6 (-0 - a0 - ma) = ‘8 (e + a, + W) = ‘8 (0 + a0 - w3) # P (0 - a, - 64 

It is easy to show that in this case the temperature profile is alS0 
asymmetric. 

0 0 
0 2’ R 0 2” 8 

Fig. 7. Fig. 8. 

3. The COIN L\ = 0. study of this limiting case shows that here Only a 
single type of profile is possible - this is parabolic. The temperature 
distribution is described by a parabola of the fourth degree. 
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Fig. 9. Fig. 10. 

From the exact solution obtained above for the temperature profile it 
follows that a symmetric distribution of the velocity vrofile corresponds 
to a symmetric distribution of temperature. An asymmetric velocity pro- 
file corresponds to an asymmetric temperature profile. For greater values 
of NRethere occur local elevations of temperature, in places with extreme 
velocity gradients, on account of dissipation. In all cases of flow the 
temperature profile is directed opposite to the velocity profile. 

Note. For Prandtl number u f 1 the equation (1.4) cannot be integrated 
in closed form. However, if 120 = n (n + 1) (n is an integer), the 
general solution of the homogeneous equation (1.4) is obtained in terms 
of the Weierstrassian functions [(a) and u(u). A particular solution of 
the inhomogeneous equation (1.4) is now expressed by quadrature8 in terms 
of unevaluated integrals, and therefore the general solution of the in- 
homogeneous equation (1.4) .is obtained in a form which is cumbersome for 
study. 

If n = 6, 8, 10. . . . , which corresponds to u = 3.5. 6, 9.16, a 
particular solution of equation (1.4) can be found in the form 

and the general solution of equation (1.4) is then obtained in closed 
form. However, in view of its complexity we shall not embark upon a study 
of it. 
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