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In this paper an exact solution is obtained, in terms of Weierstrassian
elliptic functions, of the energy equation for an incompressible viscous
fluid with a Prandtl number equal to unity, for the case of the well
known [ 1] plane steady flow between two nonparallel plane walls. Trans-
formation of the solution from Weierstrassian functions to the tabulated
Jacobian functions [2 ] makes it possible to present the solution thus
obtained in graphical form,

We note that after this work had been practically completed, the author
became aware that this exact solution had already been considered by
Millsaps and Pohlhausen [ 3 ]. However, in the latter paper the energy
equation was integrated numerically.

1. Formulation of the problem. It is well known [1 1 that the Navier-
Stokes equations, written in a polar system of coordinates r, 0, admits
of an exact solution in the form

ro,

¥ = 5, = —[3¥ (0 —8, g2, 85) + 1], vg="0 (1.1)
4pv? 1 3
p=— ‘:.: [3? (0—0, 82 8+ 35+7F {.,’2] + const

where v, is the radial, and vg the tangential component of the vector
velocity, p is the pressure, p e density, v the kinematic coefficient
of viscosity, y the Weierstrassian elliptic function, g, and 83 are the
invariants of the function y, 00 is an arbitrary constant which may be a
complex number, This solution can be interpreted as the plane flow be-
tween two nonparallel walls with an included angle of 2a. Then the arbit-
rary constants 00. g, and g3 are determined from the condition of no slip
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at the walls and from the condition of the specified discharge Q:

Pta—0p g g)=—F, | m©d0=0 1.2

It is not difficult now to verify that the equation of energy, written
in the polar system of coordinates, admits of an exact solution in the
form

144 Aov?
T = —Cvr—z— t(0) 1.3)

where A is the reciprocal of the mechanical equivalent of heat, ¢ is the
Prandt] number, whilst the function t(8) has to satisfy the inhomogeneous
Lame equation

t7 (u) = [1209 (1) + 4o — 4] ¢ (u) —[¥° (u) + ¥ (u) 4 19 (w) + m] (1.4)

where 1

2 1 1
u=10—89, l=g—7Tg m="3y—"7g

We shall henceforth consider the case of constant temperature of the
walls: then the function t(u) = t(0 — 00) must satisfy the homogeneous
boundary conditions

t(a—0,)=t(—a—8)=0 (1.5)

Since the solution of equation (1.4) depends on the function y (8 — 00,
g g3), defined by the constants 00, g, and g3, then in the study of
the properties of the solution of equation (1.4) with the boundary con-
ditions (1.5) we shall rely on the properties of the solution (1.1) ob-
tained in the paper [4 ].

2. The solution for the temperature profile. In the case 0 = 1 the

homogeneous Lame equation takes the form:
1" (u) = 12 (u) t () 2.1)

and it follows from the theory of elliptic functions that two of its
particular solutions are

b (w) = 9 (u) (2.2)
t  du ¥ (u) i .
(1) = 9°0) \ gy = — T2 0% (& o o) + B¢ (u Fon) et (u + ag) +
-+ (a%ey + b2eq + ceg) u] 2.3

where {(u) denotes the Weierstrassian function, 2&)1 and 2m3 are the
two elementary periods of the function y (u):
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—W3 =W + W3, €; = ¥ ((‘)1) (L = 1; 2: 3)
1 1
G—a e ' T a—ae—ea ' ‘T (a—ea)(a—e)

q=

(2.4)

Applying the method of variation of arbitrary constants and utilizing
the well known properties of the Weierstrassian functions y(u) and {(u)
for the calculation of the indefinite integrals, we obtain as a parti-
cular solution of the inhomogeneous equation (1.4) the following
expression:

(W) =" (@) [ 8 () + Bu+ CL @+ a)+ DL (et 09) + GLutag)]  (25)
where

C=2ar (Lot Led o le? 4 me D=1pz (1.4 1,3 Lleg? .
. (41+31+_2 12 + mey), . (42+3e2+.2162+me¢

G=%ﬁgp5+%w+%mwmw,B=&ﬁﬂwH%—i(M)

12

The general solution of equation (1.4) is then
L(8) = cata () ~+ ca (82) (u) + ¢, (w) 2.7

where ¢y, ¢, are arbitrary constants, which must be found from the con-
ditions (1.5) for the particular solution required with constant tempe-~
rature of the walls.

We shall henceforth distinguish three separate cases, when the dis-
criminant A = g23 - 27532 of the cubic equation 4s° — g8 ~ 83 = 0 is
less than, greater than, or equal to zero.

1. The case A< 0. Here we have [4 ] 00 = @, and the solution for the
velocity profile

1—cent

¥’ = — [39 (0 — o) 4 1]= — [3111 T Cm’ + 1 —2H (2k* - 1)], T=20VH (2.8)

is the unique solution and gives a purely divergent stream which is sym-
metric relative to the axis of the diffuser. Here the solution (2.8) de-
pends on two independent parameters H and the Jacobian modular function
k2. The physical parameters of the problem - the Reynolds number NRe =
Q/2v and the angle of divergence of the diffuser 2a - are expressed in
terms of the parameters H and k2 by means of the conditions (1.2), and
this relation is given by formulas (7.1), (7.3), or the tables presented
in paper {4 1. If now in the solution (2.7) for the temperature profile
we make the substitution u= 0 - w, and transform from the Weierstrassian
functions y and C to the Jacobian functions sn, cn, dn and Zn, then the
solution for the temperature, satisfying the boundary conditions (1.5),
is obtained in the following form:
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t(0) = S(0) {% T (0) + BO + 2 [MP (0) — NQ (0)] + DR (8) —
— 1 [2(pP (9) —qQ(0)) + R (8) + v0) (2.9)
Here

sntTenT snt
dnt dn «

dnt(1+cn7) — dnt(1—cn7)
e Te=s@-VESITEES

PO)=J(O)—VH Q(0)=V HEkx

RO)=J(0)+VH

sn tdnt

S(0)=4H"'(m. J(6)=H[2 %+%(2k2—1)—1]e+1f§z“

y=—(2k2—1)H[ 8k2(1—k“)+1]

L+ St —m
o — 16T (a) + Ba 4 2 [MP (a) —NQ(a)] 4 DR (a)
1= 2[pP (a) — qQ ()] + H(a) + ya

M=-L(ps—qnH~, N =L (pt+gs) ¢

D= — 5@kt —1) [5 @k —1)® + 42k — 1) (1 —k) k2 4 - (2P — 1) H —
_ 2 _ — 1 -
L@ —1)H* 4 LH)

1
B=H[(2M—2D)%(2k2—1)—4Nkk'—-E H-l], 2= —k?

8kt (1 —42) —1 2k2 —1
P="1ers (1 —k%) °* 1= "4k

s = Ht {i‘% (2k2—1)04 % (2k2 —1)2 (1 — k) h2— 4 (1 — K2)2 k8
+ % (2k2 — 1) [_;_ 2k — 1)2 —12(1 — &?) kzl H- 4 %H (2k2 — 1) —
— 4k (1 — Y| H 2+ %(21:2 — 1) H-8}

t=HY (18 2k2 1) (1 — k) ROk’ ++ 2 k' [ L 2k —1)2 — 4 (1 — k%) K| H1
{ 3 3 3 ]
+ % (2k2 — 1) kk’H-2 4- .9_ kk' H-2}

K and £ are the complete elliptic integrals of the first and second kinds
with modulus k.,

From the solution (2.9) it is easy to obtain the value of the tempe-
rature on the axis of the diffuser. We have

t(0)=2H?(D —e)) (2.10)

Since all the functions §, T, P, Q and R occurring in the solution
(2.9) are odd, then t(0) is an even function, and consequently the dis-
tribution of temperature in this case (A < 0) is symmetric with respect
to the axis.
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Fig. 1. Fig. 2.

In FPig. 1 and 2 are represented the profiles of velocity and tempe-
rature, computed from formulas (2.8) and (2.9) for the case kz = 0.9,

H = 144, which corresponds to @ = 0.07074 = 40, Np, = 20.34,

2. The case A > 0, Here several variants are possible.
First variant: 90 = . The solution for the velocity profile is (4]
W=mg=—[¥ O —wy) +1]=

=—[3k2sn2(0} 2) — (1 + A A+ 1)
.10
and consequently the stream is symmetric with respect to the axis of the
diffuser, the quantity a taking the values Nys Mps eees which are the
positive roots of the transcendental equation [4 ]
i L L
In this case the solution (2.11) depends on the two independent para-
meters A and the modulus of the Jacobian function k%, The physical para-
meters - the number N and the angle 2a - are expressed in terms of A
and k2 by means of the conditions (1.2), and this relation is given by
the fosmulas (8.1), (8.2) or the Tables 2 and 3, presented in the paper
[a]1. Substituting @ — wy in the solution (2.7) in place of the argument
u, and transforming to Jacobian functions, we obtain the following ex-
pression for the temperature profile, satisfying the boundary conditions
(1.5), with a = 75,

t(6) = 5:(9) {% T2 (0)+ B, 0+ CP:(0) 4 DR, (0) ++ GQ2 (0) —

— ¢2 [a?P2 (0) + b2h2 (0) + ¢*Q2 (0) + 0]} (2.12)
Here
=, sV en(0V3) _
P2 (0) = T (0) — V242 i(,_dr_](%‘%(i) U % ©) =Ts(0) — Vi (0 K]l()ed]n i(: V)

- en(OVX)dn@®V3)

N - -
sn(0Vx) » Ta(0)= )‘[r—*(z—/*)]ﬂ-f-]/\Zn(el).)

Q:(0) = T2 (0) + VA
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S2(0) =22"42sn (0 VX)en (6 V2)dn (8 V')
116T2 (a) 4 Ba + cPy(a) + DR (a) + EQz(a)

€2= PETIN (@) + b4tz (@) + ¢2Qz (@) + Y2 @13)
2k (2—k)S 2k 2k 2k 1
C=Tu—ry {( E 108 . 27x)+ e +9’i’}
2% 1 (21:2— 0 2kt @k —1r 2W—1 1
D=pu= k‘-’)k‘{ g ¢+t Tan e +'ﬁ}
14kt (1+h2)s 14k A+re 1482 1
G="o { 8 108 %= Tam tToaw ﬁ's}

B=% [o (2 — k%) + D (2k*— 1) —G (1 + k?)— 411]
c=@—RP @R —IP Y, S=le—mER—1)d+k)

e, BT O =
e =—=mas (T — k)2 ks » P

1 72—k 2k —1 14k
‘(2=3’Xs‘[(1_k2)2+ A—k)R K ]

The temperature on the axis of the stream is
t (0) = 222%k2 (G — cac?) (2.14)
By virtue of the fact that all the functions occurring in (2.12) are

odd, the temperature distribution in this case (A > 0, 00 = wzis sym-
metric with respect to the axis of the diffuser.

t
v -800
s
200 “400) ‘\
T s o

Fig. 3. Fig. 4.
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In Fig. 3 and 4 are shown the velocity and temperature profiles, com-
puted from formulas (2.11) and (2.12) for the case k% = 0.8, A = 196,
which corresponds to a = 0.08727 = 5%, Nhe = 34,82, In this case the flow

s —m Vs Ao

v J T +
oorainea 18 purelLy uaivergenc.

With a = n, = 2(b1 -ny the central diverging stream is flanked
symmetrically on both sides by regions of inflow (Fig. 5). The temperature
in this case is computed again from formula (2.12), but with another value
of the constant c,, which is easily obtained from the following property
of the functions 1}. PZ' R2 and 02. e.g.:

T3(0 4 20;n) = T2 (8) 4 2ne; [E/K — % 2— k’)] . (2.15)
where n is an integer. Then
Ty (a) = T2 (n2) = 2012 [E /K — % 2— k’)] — Ty (m)

1}(n1) has already been computed for the case when a = Ny
t -
/] \ \
"N “ \\
\ ‘ 0
)

19°90" an 5 T’
-100 6’ v/a -300 v/
Fig. 5, Fig. 6.

In Pig. 5 and 6 are represented the velocity and temperature profiles,
computed in this case (a =7, = 2(»1 - 1n,) for k2 = 0.8, A= 196, (a =
0.2346 = 13°30°, Np = 10.82).

When a = Ny = 2&)1 + 1y the centreal diverging stream is flanked
symmetrically on both sides by regions of inflow and outflow. The tempe-
rature profile is also correspondingly complex.

Second variant: 00 = ,. The solution for the velocity and temperature
is

cn{(0 V1)

P =—{30 0 —ws) + 1] = — [3”" dnt 8 V)

— (1 + k) + 1] (2.16)

£(6) = S3(8) {- T (8) + BO + CP5 (8) + CHs (8) + GQs (0) —
— ¢3 [a®P3 (8) + b*R3 (0) + ¢*Qs (8) + v20]}, ¢ (0) = — 2W%3 (1 — k%) (D — csb?) (2.17)
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where
Ps(0) =T2(8), Rs(0)=0Q:(8), Qs(0)=R3(0), Ts5(0)=P:(0)

sn(0Va)en (0V3)

dn® (0 V%)

The expression for the constant 2 is obtained from formula (2.13),
if instead of the functions with index 2 we substitute the functions with
index 3. The expression for the coefficients az, bz, ¢? and Cc, D, G, B
remain the same as in the first variant.

Ss(0) = — 22"T8k2 (1 — k?)

Here a can assume the following system of values [4 1. a-= @ -y,
a=w +7n,, a=0w + 0, a=0o + n3 and so on, a = n W, (n is a positive
integer). If a = @ =Ny, then the stream is purely converging and the
temperature inside the stream is higher than the temperature of the walls
(Fig. 7 and 8), k% = 0.9, A = 400, a = 4°, N; = 31.9, If a = @ + n,,
then the central converging stream is flanked symmetrically by regions of
outflow and the temperature in the region of the converging stream is
higher than the temperature of the walls, whilst in. the region of the
diverging stream it is lower than the temperature of the walls (Fig. 9
and 10), kz = 0.8, A = 400, a = 10°. Nhe = 33. When a = @, + N, the
central converging stream is flanked symmetrically on both sides by
regions of outflow and inflow. When a =n @y, the solution for the velo-
city profile has the form [4]:

b= — 2 (36 (0 —ay— w0 + 1)

where a, = + (aa - "1) for a, = @,, and a, = + N for @, = 2w,, and so
on. In this case the stream is not symmetric relative to the axis, since

P(—0—ay—own)=¥O+ ay+ ) =¥ B+ ag—0)F=¥ 0 —ay— )

It is easy to show that in this case the temperature profile is also
asymmetric.

N
200 \\\\ 200 // ‘\

0 z° ] ) )
Fig. 7. Fig. 8.
3. The case A = 0. Study of this limiting case shows that here only a

single type of profile is possible - this is parabolic. The temperature
distribution is described by a parabola of the fourth degree.
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Fig. 9. Fig. 10,

\§

From the exact solution obtained above for the temperature profile it
follows that a symmetric distribution of the velocity profile corresponds
to a symmetric distribution of temperature. An asymmetric velocity pro-
file corresponds to an asymmetric temperature profile. For greater values
of Nhathere occur local elevations of temperature, in places with extreme
velocity gradients, on account of dissipation. In all cases of flow the
temperature profile is directed opposite to the velocity profile.

Note. For Prandtl number o # 1 the equation (1.4) cannot be integrated
in closed form., However, if 120 =n (n + 1) (n is an integer), the
general solution of the homogeneous equation (1.4) is obtained in terms
of the Weierstrassian functions {(u) and o(u). A particular solution of
the inhomogeneous equation (1.4) is now expressed by quadratures in terms
of unevaluated integrals, and therefore the general solution of the in-
homogeneous equation (1.4) is obtained in a form which is cumbersome for
study.

If n= 6, 8, 10, ..., which corresponds to o = 3.5, 6, 9.16, a
particular solution of equation (1.4) can be found in the form

to= AP ? )+ AP E @)+ ...

and the general solution of equation (1.4) is then obtained in closed
form. However, in view of its complexity we shall not embark upon a study
of it.
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